
Data Modeling, Normalization and Denormalization
Nordic PgDay 2018, Oslo

Dimitri Fontaine

CitusData

March 13, 2018

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 1 / 49

Data Modeling, Normalization and Denormalization

Dimitri Fontaine

PostgreSQL Major Contributor

pgloader
CREATE EXTENSION

CREATE EVENT TRIGGER

Bi-Directional Réplication
apt.postgresql.org

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 2 / 49

Mastering PostgreSQL in Application Development

I wrote a book!

Mastering PostgreSQL in Application
Development teaches SQL to devel-
oppers: learn to replace thousands of
lines of code with simple queries.

http://MasteringPostgreSQL.com

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 3 / 49

http://MasteringPostgreSQL.com
http://MasteringPostgreSQL.com

Rob Pike, Notes on Programming in C

Rule 5. Data dominates.

If you’ve chosen the right data structures
and organized things well, the algorithms
will almost always be self-evident. Data
structures, not algorithms, are central to
programming. (Brooks p. 102.)

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 4 / 49

Database Anomalies

We normalize a database model so as to avoid Database Anomalies. We
also follow simple data structure design rules to make the data easy to
understand, maintain and query.

Database Anomalies

Update anomaly
Insertion anomaly
Deletion anomaly

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 5 / 49

Update Anomaly

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 6 / 49

Insertion Anomaly

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 7 / 49

Deletion Anomaly

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 8 / 49

Database Design and User Workflow

Show me your flowcharts and conceal your
tables, and I shall continue to be mystified.
Show me your tables, and I won’t usually
need your flowcharts; they’ll be obvious.
(Fred Brooks)

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 9 / 49

Database Modeling & Tooling

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 10 / 49

Tooling for Database Modeling

We can use psql and SQL scripts to edit database schemas:

1 BEGIN;
2

3 create schema if not exists sandbox;
4

5 create table sandbox.category
6 (
7 id serial primary key,
8 name text not null
9);

10

11 insert into sandbox.category(name)
12 values ('sport'),('news'),('box office'),('music');
13

14 ROLLBACK;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 11 / 49

Object Relational Mapping

The R in ORM stands for “Relation”. The result of a SQL query is a
relation. That’s what you should be mapping, not your base tables!

When mapping base tables, you end up trying to solve different complex
issues at the same time:

User Workflow
Consistent view of the whole world at all time

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 12 / 49

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 13 / 49

Basics of the Unix Philosophy: principles

Some design rules that apply to Unix and to database design too:

Rule of Clarity
Clarity is better than cleverness.
Rule of Simplicity
Design for simplicity; add complexity only where you must.
Rule of Transparency
Design for visibility to make inspection and debugging easier.
Rule of Robustness
Robustness is the child of transparency and simplicity.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 14 / 49

Normal Forms

The Normal Forms are designed to avoid database anomalies, and they
help in following the listed rules seen before.

1st Normal Form, Codd, 1970

1 There are no duplicated rows in the table.
2 Each cell is single-valued (no repeating groups or arrays).
3 Entries in a column (field) are of the same kind.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 15 / 49

Second Normal Form

2nd Normal Form, Codd, 1971

A table is in 2NF if it is in 1NF and if all non-key attributes are
dependent on all of the key. Since a partial dependency occurs when a
non-key attribute is dependent on only a part of the composite key, the
definition of 2NF is sometimes phrased as:

“A table is in 2NF if it is in 1NF and if it has no partial dependencies.”

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 16 / 49

Third Normal Form and Boyce-Codd Normal Form

3rd Normal Form (Codd, 1971)
and BCNF (Boyce and Codd, 1974)

3NF A table is in 3NF if it is in 2NF
and if it has no transitive
dependencies.

BCNF A table is in BCNF if it is in
3NF and if every determinant is a
candidate key.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 17 / 49

More Normal Forms!

Each level builds on the previous one.

4NF A table is in 4NF if it is in BCNF and if it has no multi-valued
dependencies.

5NF A table is in 5NF, also called “Projection-join Normal Form”
(PJNF), if it is in 4NF and if every join dependency in the table is a
consequence of the candidate keys of the table.

DKNF A table is in DKNF if every constraint on the table is a
logical consequence of the definition of keys and domains.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 18 / 49

Database Constraints

Primary Keys, Surrogate Keys, Foreign Keys, and more. . .

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 19 / 49

Primary Keys

First Normal Form requires no duplicated row. I know, let’s use a Primary
Key!

1 create table sandbox.article
2 (
3 id bigserial primary key,
4 category integer references sandbox.category(id),
5 pubdate timestamptz,
6 title text not null,
7 content text
8);

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 20 / 49

Primary Keys, Surrogate Keys

Artificially generated key is named a surrogate key because it is a
substitute for natural key. A natural key would allow preventing
duplicate entries in our data set.

1 insert into sandbox.article (category, pubdate, title)
2 values (2, now(), 'Hot from the Press'),
3 (2, now(), 'Hot from the Press')
4 returning *;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 21 / 49

Primary Keys, Surrogate Keys

Oops.

1 -[RECORD 1]---------------------------
2 id | 3
3 category | 2
4 pubdate | 2018-03-12 15:15:02.384105+01
5 title | Hot from the Press
6 content |
7 -[RECORD 2]---------------------------
8 id | 4
9 category | 2

10 pubdate | 2018-03-12 15:15:02.384105+01
11 title | Hot from the Press
12 content |
13

14 INSERT 0 2

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 22 / 49

Primary Keys, Surrogate Keys

Fixing the model is easy enough: implement a natural primary key.

1 create table sandboxpk.article
2 (
3 category integer references sandbox.category(id),
4 pubdate timestamptz,
5 title text not null,
6 content text,
7

8 primary key(category, pubdate, title)
9);

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 23 / 49

Primary Keys, Foreign Keys

Now we have to reference the whole natural key everywhere:

1 create table sandboxpk.comment
2 (
3 a_category integer not null,
4 a_pubdate timestamptz not null,
5 a_title text not null,
6 pubdate timestamptz,
7 content text,
8

9 primary key(a_category, a_pubdate, a_title, pubdate, content),
10

11 foreign key(a_category, a_pubdate, a_title)
12 references sandboxpk.article(category, pubdate, title)
13);

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 24 / 49

Primary Keys, Foreign Keys

One solution is to have both a surrogate and a natural key:

1 create table sandbox.article
2 (
3 id integer generated always as identity,
4 category integer not null references sandbox.category(id),
5 pubdate timestamptz not null,
6 title text not null,
7 content text,
8

9 primary key(category, pubdate, title),
10 unique(id)
11);

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 25 / 49

Normalization Helpers: database constraints

To help you implement Normal Forms with strong guarantees even when
having to deal with concurrent access to the database, we have
constraints.

Primary Keys
Foreign Keys
Not Null
Check Constraints
Domains
Exclusion Constraints

1 create table rates
2 (
3 currency text,
4 validity daterange,
5 rate numeric,
6

7 exclude using gist
8 (
9 currency with =,

10 validity with &&
11)
12);

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 26 / 49

Denormalization

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 27 / 49

Denormalization

The first rule
of denormalization is that you

don’t
do denormalization.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 28 / 49

Denormalization is an optimization technique

Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs,
and these attempts at efficiency actually have a strong negative
impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time:

premature optimization is the
root of all evil. Yet we should not pass up our
opportunities in that critical 3%.

Donald Knuth, "Structured Programming with Goto Statements".
Computing Surveys 6:4 (December 1974), pp. 261–301, §1.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 29 / 49

Denormalization: cache data

The main trick: repeat data to make it locally available, breaking
functional dependency rules. You know have a cache.

Implement Cache Invalidation.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 30 / 49

Denormalization example

1 \set season 2017
2

3 select drivers.surname as driver,
4 constructors.name as constructor,
5 sum(points) as points
6

7 from results
8 join races using(raceid)
9 join drivers using(driverid)

10 join constructors using(constructorid)
11

12 where races.year = :season
13

14 group by grouping sets(drivers.surname, constructors.name)
15 having sum(points) > 150
16 order by drivers.surname is not null, points desc;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 31 / 49

Denormalization example

1 create view v.season_points as
2 select year as season, driver, constructor, points
3 from seasons left join lateral
4 (
5 select drivers.surname as driver,
6 constructors.name as constructor,
7 sum(points) as points
8 from results
9 join races using(raceid)

10 join drivers using(driverid)
11 join constructors using(constructorid)
12 where races.year = seasons.year
13 group by grouping sets(drivers.surname, constructors.name)
14 order by drivers.surname is not null, points desc
15)
16 as points on true
17 order by year, driver is null, points desc;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 32 / 49

Denormalization example

And now cache the results of the view into a durable relation:

1 create materialized view cache.season_points as
2 select * from v.season_points;
3

4 create index on cache.season_points(season);

When you need to invalidate the cache, just refresh the view:

1 refresh materialized view cache.season_points;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 33 / 49

Denormalization example

And now rewrite your application’s query as:

1 select driver, constructor, points
2 from cache.season_points
3 where season = 2017
4 and points > 150;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 34 / 49

Other denormalization use cases

Audit Trails
History Tables

Partitionning
Scaling Out

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 35 / 49

History tables and audit trails

Another case where you might have to denormalize your database model is
when keeping a history of all changes.

Foreign key references to other tables won’t be possible when those
reference changes and you want to keep a history that, by definition,
doesn’t change.

The schema of your main table evolves and the history table shouldn’t
rewrite the history for rows already written.

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 36 / 49

History tables with JSONB

JSONB is very flexible, and can host the archives for all your database
model versions in the same table, or for all your source tables at once even.

1 create schema if not exists archive;
2

3 create type archive.action_t
4 as enum('insert', 'update', 'delete');
5

6 create table archive.older_versions
7 (
8 table_name text,
9 date timestamptz default now(),

10 action archive.action_t,
11 data jsonb
12);

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 37 / 49

Validity periods

A variant of the historic requirement is to keep track of data changes and
be able to use the value that were valid at a known time. Currency
exchange rates applied to invoices is an example:

1 create table rates
2 (
3 currency text,
4 validity daterange,
5 rate numeric,
6

7 exclude using gist (currency with =,
8 validity with &&)
9);

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 38 / 49

Validity periods

Here’s how to use the data from a known time in the past:

1 select currency, validity, rate
2 from rates
3 where currency = 'Euro'
4 and validity @> date '2017-05-18';
5

6 -[RECORD 1]---------------------
7 currency | Euro
8 validity | [2017-05-18,2017-05-19)
9 rate | 1.240740

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 39 / 49

Denormalization Helpers: advanced datatypes

Composite datatypes help with denormalization. It’s possible to keep
several values in the same column thanks to them. Spare matrix becomes
an extra field of jsonb type.

Composite Types
Arrays
JSONb
Enumerated Types

hstore

ltree

intarray

pg_trgm

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 40 / 49

Partitioning

Partitioning comes with demormalization trade-offs in PostgreSQL 10:

Index are managed at the partition level
No Primary Key, No Unique Index, No Exclusion Constraint
No Foreign Key pointing to a partitionned table
Lack of ON CONFLICT support
Lack of UPDATE support for re-balancing

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 41 / 49

Not Only SQL

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 42 / 49

Schemaless design

PostgreSQL includes several composite types (multi-value data). JSONb
allows the implementation of schemaless design right within PostgreSQL.

1 select jsonb_pretty(data)
2 from magic.cards
3 where data @> '{"type":"Enchantment",
4 "artist":"Jim Murray",
5 "colors":["White"]
6 }';

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 43 / 49

NoSQL and Durability Trade-Offs

PostgreSQL setup is made with GUC, or Great Unified Configuration. You
can edit values in the postgresql.conf file, or dynamically change it in
the session. Or in the transaction with SET LOCAL. Or have per-user or
per-database settings.

1 create role dbowner with login;
2 create role app with login;
3

4 create role critical with login in role app inherit;
5 create role notsomuch with login in role app inherit;
6 create role dontcare with login in role app inherit;
7

8 alter user critical set synchronous_commit to remote_apply;
9 alter user notsomuch set synchronous_commit to local;

10 alter user dontcare set synchronous_commit to off;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 44 / 49

Automatic Per-Transaction Durability Setting

1 SET demo.threshold TO 1000;
2

3 CREATE OR REPLACE FUNCTION public.syncrep_important_delta()
4 RETURNS TRIGGER
5 LANGUAGE PLpgSQL
6 AS
7 $$ DECLARE
8 threshold integer := current_setting('demo.threshold')::int;
9 delta integer := NEW.abalance - OLD.abalance;

10 BEGIN
11 IF delta > threshold
12 THEN
13 SET LOCAL synchronous_commit TO on;
14 END IF;
15 RETURN NEW;
16 END;
17 $$;

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 45 / 49

Horizontal Scaling: Sharding

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 46 / 49

Five sharding data models and which is right?

If you were here this morning you’ve seen Craig’s talk, so that’s about it.

Sharding by geography
Sharding by entity id
Sharding a graph
Time partitioning
Depends. . .

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 47 / 49

Denormalization and Sharding

Adding the sharding key to every
table is another case of duplicating
information for maintaining a
cache. Beware of database
anomalies

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 48 / 49

Questions?

Now is the time to ask!

https://2018.nordicpgday.org/feedback

Dimitri Fontaine (CitusData) Data Modeling, Normalization and Denormalization March 13, 2018 49 / 49

https://2018.nordicpgday.org/feedback

	Introduction
	Tooling
	Normalization
	Denormalization
	Not Only SQL
	Denormalizing to scale: Sharding

