Custom indexing with GiST and PostgreSQL

Dimitri Fontaine

October 18, 2008

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Outline

Table of contents

@ Introduction: problem and existing solutions

© Developing a GiST module
@ PostgreSQL module development
@ GiST specifics
@ GiST challenges
@ Testing, debugging, tools

© Current status and roadmap

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Introduction: problem and existing solutions

prefix queries

The prefix project is about solving prefix queries where a literal is
compared to potential prefixes in a column data.

SELECT ... FROM prefixes WHERE prefix @> ’abcdef’;

You want to find rows where prefix is 'a’, 'abc’, 'abcd’, etc.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Introduction: problem and existing solutions

The plain SQL way

depesz has a blog entry about it: http://www.depesz.com/
index.php/2008/03/04/searching-for-longest-prefix/

create table prefixes (
id serial primary key,
prefix text not null unique,
operator text,
somethingl text,
something?2 text

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

http://www.depesz.com/index.php/2008/03/04/searching-for-longest-prefix/
http://www.depesz.com/index.php/2008/03/04/searching-for-longest-prefix/

Introduction: problem and existing solutions

The plain SQL way: indexes for known length 3

This works well when you know about the prefix length in your
queries:

CREATE INDEX pal on prefixes (prefix)
WHERE length(prefix) = 1;

CREATE INDEX pa2 on prefixes (prefix)
WHERE length(prefix) = 2;

CREATE INDEX pa3 on prefixes (substring(prefix for 3).
WHERE length(prefix) >= 3;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Introduction: problem and existing solutions

The plain SQL way: indexes for known length 3

This works well when you know about the prefix length in your
queries:

select * from prefixes
where (length(prefix)
or (length(prefix) = 2 and prefix
or (length(prefix) >= 3
and substring(prefix for 3) = 7)
order by length(prefix) desc
limit 1;

1 and prefix

]
NN
~

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Introduction: problem and existing solutions

The plain SQL way: no extra indices

depesz thought of simply using a list of generated prefixes of
phone number. For example for phone number 0123456789, we
would have: prefix in (°0’, ’01°, ’012°, ’0123’, ...)

Example

select *

from prefixes

where prefix in (?, 7, 7, 7, 7, 7, 7)
order by length(prefix) desc

limit 1;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Introduction: problem and existing solutions

The GiST index way

The generic solution here is the specialized GiST index.

CREATE INDEX idx_prefix ON prefixes
USING GIST(prefix gist_prefix_ops);

SELECT ... FROM prefixes WHERE prefix @> ’abcdef’;

So let's talk about developing this solution!

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several
kinds of indexes:

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several
kinds of indexes:

@ BTree

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several
kinds of indexes:

@ BTree

@ Hash

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several
kinds of indexes:

@ BTree

@ Hash

o GIiST

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several
kinds of indexes:

BTree

Hash

GiST

GIN

® 6 o6 o

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several What's special about GiST?
kinds of indexes:

BTree
Hash
GiST
GIN

® 6 o6 o

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several What's special about GiST?
kinds of indexes:

BTree
Hash
GiST
GIN

@ balanced index

® 6 o6 o

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several What's special about GiST?
kinds of indexes:
@ balanced index
@ BTree
@ tree-structured access
© Hash method
o GiST
o GIN

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several What's special about GiST?
kinds of indexes:
@ balanced index
@ BTree
@ tree-structured access
© Hash method
o GiST @ acts as a base template
o GIN

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

What's GIST?

A kind of index for PostgreSQL: Generalized Search Tree.

PostgreSQL supports several What's special about GiST?
kinds of indexes:
@ balanced index
@ BTree
@ tree-structured access
© Hash method
o GiST @ acts as a base template
o GIN

It's a kind of a plug-in index system, easy enough to work with to
plug your own datatype smartness into PostgreSQL index searches.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Developing a GiST indexing module

Big picture steps:

@ internal representation of data

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Developing a GiST indexing module

Big picture steps:

@ internal representation of data

@ a standard PostgreSQL extension module

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Developing a GiST indexing module

Big picture steps:
@ internal representation of data
@ a standard PostgreSQL extension module

@ exporting C functions in SQL

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Developing a GiST indexing module

Big picture steps:
@ internal representation of data
@ a standard PostgreSQL extension module
@ exporting C functions in SQL

@ using pgxs

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

prefix range datatype

Internal representation of data is the following:

Example

typedef struct {

char first;

char last;

char prefix[1]; /#* varlena struct, data follows */
} prefix_range;

It came from internal representation to full new SQL visible
datatype, prefix_range.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

PostgreSQL module development

This part of the development is the same whether you're targeting
index code or general purpose code. It's rather a steep learning
curve... You'll have to read the source.

Helpers: http://doxygen.postgresql.org/ and #postgresql

Example

DatumGetCString/(
DirectFunctionCalli(
prefix_range_out,
PrefixRangeGetDatum(orig)
)
)

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

http://doxygen.postgresql.org/

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

PostgreSQL module development: multi-version support

If you want to support multiple major versions of PostgreSQL,
check PG_VERSION _NUM and... read the source to find out about
discrepancies.

#if PG_VERSION_NUM / 100 == 802
#define PREFIX_VARSIZE(x) (VARSIZE(x) - VARHDRSZ)
#define PREFIX_VARDATA(x) (VARDATA (x))

#if PG_VERSION_NUM / 100 == 803
#define PREFIX_VARSIZE(x) (VARSIZE_ANY_EXHDR(x)
#define PREFIX_VARDATA (x) (VARDATA_ANY (x))

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

PostgreSQL module development: macros

PostgreSQL code style uses macros to simplify raw C-structure
accesses, the extension modules writers had better use the same
technique.

#define DatumGetPrefixRange (X) ((prefix_range *)| PREI
#define PrefixRangeGetDatum(X) PointerGetDatum(make_:
#define PG_GETARG_PREFIX_RANGE_P(n) DatumGetPrefixRange (P
#define PG_RETURN_PREFIX_RANGE_P(x) return PrefixRangeGet]

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

PostgreSQL module development: function declarations

PostgreSQL has support for polymorphic and overloading
functions, even at its innermost foundation: C-level code.

Example
PG_FUNCTION_INFO_V1(prefix_range_cast_from_text) ;
Datum prefix_range_cast_from_text (PG_FUNCTION_ARGS)
{
text *txt = PG_GETARG_TEXT_P(O0);
Datum cstring = DirectFunctionCalll(textout,
PointerGetDatum(
return DirectFunctionCalll(prefix_range_in, cstring)

¥

txt) .

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

PostgreSQL module development: SQL integration

Here's how to declare previous function in SQL:

Example

CREATE OR REPLACE FUNCTION prefix_range(text)
RETURNS prefix_range

AS °MODULE_PATHNAME’, ’prefix_range_cast_from_text’
LANGUAGE °C’ IMMUTABLE STRICT;

CREATE CAST (text as prefix_range)
WITH FUNCTION prefix_range(text) AS IMPLICIT;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

PostgreSQL module development: allocating memory

@ Use palloc unless told not to, or when the code you're
getting inspiration from avoids palloc for malloc.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

PostgreSQL module development: allocating memory

@ Use palloc unless told not to, or when the code you're
getting inspiration from avoids palloc for malloc.

@ palloc memory lives in a Context which is freed in one sweep
at its death (end of query execution, end of transaction, etc).

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

PostgreSQL module development: allocating memory

@ Use palloc unless told not to, or when the code you're
getting inspiration from avoids palloc for malloc.

@ palloc memory lives in a Context which is freed in one sweep
at its death (end of query execution, end of transaction, etc).

@ PostgreSQL has support for polymorphic and overloading
functions, even at the C-level.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

PostgreSQL module development: building with pgxs

PostgreSQL provides the tool suite for easy building and
integration of your module: put the following into a Makefile

Example

MODULES = prefix
DATA_built = prefix.sql

PGXS = $(shell pg_config --pgxs)
include $(PGXS)

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

PostgreSQL module development: configuring

When developing a PostgreSQL extension, you'll find it convenient
for your installation to exports DEBUG symbols and check for

C-level Asserts.

./configure --prefix=/home/dim/pgsql \
--enable-debug \
--enable-cassert

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

New datatype magic

We choose to export the internal data structure as a full type:

CREATE TYPE prefix_range (

INPUT = prefix_range_in,
OUTPUT = prefix_range_out,
RECEIVE = prefix_range_recv,
SEND = prefix_range_send

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

New datatype magic

We choose to export the internal data structure as a full type:

dim=# select ’0123’::prefix_range | ’0137’ as union;
union

01[2-3]
(1 row)

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

New datatype magic

We choose to export the internal data structure as a full type:

Example

CREATE TABLE prefixes (
prefix prefix_range primary key,
name text not null,
shortname text,
state char default ’S’,

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

New datatype magic

We choose to export the internal data structure as a full type:

Example

CREATE TABLE prefixes (
prefix prefix_range primary key,
name text not null,
shortname text,
state char default ’S’,

)

SQL integration means column storage too! wow.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

The GiST interface API

To code a new GiST index, one only has to code 7 functions in a
dynamic module for PostgreSQL:

consistent ()
union()

compress ()

penalty()

°

°

°

@ decompress()
°

@ picksplit()
°

same ()

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

The GiST interface API

To code a new GiST index, one only has to code 7 functions in a
dynamic module for PostgreSQL:

All entries in a subtree will share
@ consistent() any property you implement.
StrategyNumber is the op-
erator used into the query.

You get to implement your
equality operator (=, pr_eq) for
the internal datatype in the index.

@ same()

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

The GiST interface API

To code a new GiST index, one only has to code 7 functions in a
dynamic module for PostgreSQL:

Input: a set of entries.

@ union() Output: a new data which
is consistent with all of them.

This will form the index tree
non-leaf elements, any element
in a subtree has to be consistent
with all the nodes atop.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

The GiST interface API

To code a new GiST index, one only has to code 7 functions in a
dynamic module for PostgreSQL:

Index internal leaf data.

Example

PG_FUNCTION_INFO_Vi(gpr_compre
Datum gpr_compress
@ decompress() (PG_FUNCTION_ARGS)
{ PG_RETURN_POINTER(
PG_GETARG_POINTER(0)) ;

@ compress()

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

The GiST interface API

To code a new GiST index, one only has to code 7 functions in a
dynamic module for PostgreSQL:
In order for your GiST index
to show up good performance
characteritics, you'll have to
take extra care in implement-
ing good versions of those two.

@ penalty() see next slides
@ picksplit()

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

The GiST interface API

To code a new GiST index, one only has to code 7 functions in a
dynamic module for PostgreSQL:

Those functions expect internal
consistent () datatypes as argument and re-
union() turn values, and store exactly this.
compress ()

It's easy to mess it up and
have CREATE INDEX segfault.
penalty () Assert() your code.

°

°

°

@ decompress()
°

@ picksplit()
°

same ()

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST SQL integration: opclass

You declare OPERATOR CLASSes over the datatype to tell
PostgreSQL how to index your data. It's all dynamic down to the
datatypes, operator and indexing support. Another wow.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST SQL integration: opclass

You declare OPERATOR CLASSes over the datatype to tell
PostgreSQL how to index your data. It's all dynamic down to the
datatypes, operator and indexing support. Another wow.

Example

CREATE OPERATOR CLASS gist_prefix_range_ops
FOR TYPE prefix_range USING gist

AS

OPERATOR 1 @>,
FUNCTION 1 gpr_consistent (internal, prefix_range, p:

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST penalty

Is this user data more like this one or that one?

select a, b, pr_penalty(a::prefix_range, b::prefix_ran
from

order by 3 asc;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

ge)

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST penalty

Is this user data more like this one or that one?

select a, b, pr_penalty(a::prefix_range, b::prefix_ran
from (values(’095[4-5]’, ’0[8-9]°),
(’095[4-5]’, ’0[0-9]"),
(’095[4-5]’, ’[0-3]"),
(°095[4-5]’, ’07),
(’095[4-5]’, ’[0-9]°),
(*095[4-5]’, ’0[1-5]"),
(’095[4-5]’, ’32’),
(°095[4-5]’, ’[1-3]°)) as t(a, D)
order by 3 asc;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

ge)

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST penalty

Is this user data more like this one or that one?

select a, b, pr_penalty(a::prefix_range, b::prefix_range)
from (values

(°095[4-5]’, ’32°),
(°095[4-5]7, °[1-3]’)) as t(a, b)
order by 3 asc;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST penalty

Is this user data more like this one or that one?

select a, b, pr_penalty(a::prefix_range, b::prefix_range)
from (values(’095[4-5]’, ’0[8-9]°),
(°095[4-5]’, °0[0-9]°),

) as t(a, b)
order by 3 asc;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Developing a GiST module

GiST penalty

PostgreSQL module development
GiST specifics

GiST challenges

Testing, debugging, tools

Is this user data more like this one or that one?

select a, b, pr_penalty(a::prefix_range, b::prefix_ran

from (values

(’095([4-5]",
(’095[4-5]",
(’095[4-5]",
(’095[4-5]",

order by 3 asc;

’[0-3]17),
70)),
’[0-9]7),
’0[1-5]7),

) as t(a, b)

Dimitri Fontaine

Custom indexing with GiST and PostgreSQL

ge)

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST penalty

Is this user data more like this one or that one?

a | b | gpr_penalty
__________ e
095[4-5] | 0[8-9] | 1.52588e-05
095[4-5] | 0[0-9] | 1.52588e-05
095[4-5] | [0-3] | 0.00390625
095[4-5] | ©O | 0.00390625
095[4-5] | [0-9] | 0.00390625
095[4-5] | 0[1-5] | 0.0078125
095[4-5] | 32 | 1
095[4-5] | [1-3] | 1

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST picksplit

The index grows as you insert data, remember?

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST picksplit

The index grows as you insert data, remember?

prefix picksplit first pass step: presort the GistEntryVector vector
by positioning the elements sharing the non-empty prefix which is
the most frequent in the distribution at the beginning of the vector.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST picksplit

The index grows as you insert data, remember?

prefix picksplit first pass step: presort the GistEntryVector vector
by positioning the elements sharing the non-empty prefix which
is the most frequent in the distribution at the beginning of the vector.

Then consume the vector by both ends, compare them and
choose to move them in the left or the right side of the new
subtree.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST picksplit

The index grows as you insert data, remember?

Datum pr_picksplit(GistEntryVector *entryvec,
GIST_SPLITVEC *v,
bool presort)

OffsetNumber maxoff
GISTENTRY *ent

entryvec->n - 1;
entryvec->vector;

nbytes = (maxoff + 1) * sizeof (0OffsetNumber);

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST picksplit

The index grows as you insert data, remember?

listL = (OffsetNumber *) palloc(nbytes);
listR = (OffsetNumber *) palloc(nbytes);
unionL = DatumGetPrefixRange (ent[offl] .key) ;
unionR = DatumGetPrefixRange (ent [offr] .key) ;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST picksplit

The index grows as you insert data, remember?

pll
plr

__pr_penalty(unionL, curl);
__pr_penalty(unionR, curl);
prl = __pr_penalty(unionL, curr);

prr = __pr_penalty(unionR, curr);

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

GiST picksplit

The index grows as you insert data, remember?

if(pll <= plr && prl >= prr) {1, r}
else if(pll > plr && prl >=prr) { , r }
else if(pll <= plr && prl < prr) {1, }
else if((pll - plr) < (prr - prl)) { all to 1 }
else { /* all to listR */ }

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

dataset

ART is the French Telecom Regulation Authority. It provides a list
of all prefixes for local operators. Let's load some 11966 prefixes
from http://www.art-telecom.fr/fileadmin/wopnum.rtf .

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

http://www.art-telecom.fr/fileadmin/wopnum.rtf

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

dataset

ART is the French Telecom Regulation Authority. It provides a list
of all prefixes for local operators. Let's load some 11966 prefixes
from http://www.art-telecom.fr/fileadmin/wopnum.rtf .

Example
dim=# select prefix, shortname from prefixes limit 5;
prefix | shortname

+
010001 [] | COLT
010002[] | EQFR
010003[] | NURC
010004[] | PROS
010005[] | ITNF

(5 rows)

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

http://www.art-telecom.fr/fileadmin/wopnum.rtf

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

The gevel module allows to SQL query any GiST index!

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

The gevel module allows to SQL query any GiST index!

dim=# select gist_stat(’idx_prefix’);
Number of levels: 2

Number of pages: 63

Number of leaf pages: 62

Number of tuples: 10031

Number of invalid tuples: O

Number of leaf tuples: 9969

Total size of tuples: 279904 bytes
Total size of leaf tuples: 278424 bytes
Total size of index: 516096 bytes

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

The gevel module allows to SQL query any GiST index!

Example
select *
from gist_print(’idx_prefix’)
as t(level int, valid bool, a prefix_range)
where level =1;

select *
from gist_print(’idx_prefix’)
as t(level int, valid bool, a prefix_range)
order by level;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Correctness testing

Even when your index builds without a segfault you have to test.
It can happen at query time

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics
Developing a GiST module GiST challenges

Testing, debugging, tools

Correctness testing

Even when your index builds without a segfault you have to test.
It can happen at query time, or worse:

Example

set enable_seqgscan to on;
select * from prefixes where prefix @> ’0146640123’;
select * from prefixes where prefix @> ’0100091234° ;

set enable_segscan to off;
select * from prefixes where prefix @> ’0146640123’;
select * from prefixes where prefix ©> 0100091234’ ;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Performance testing

create table numbers(number text primary key);
insert into numbers
select ’01’ || to_char((random()*100)::int, ’FM09’)
| | to_char((random()*100)::int, °’FM09°’)
|| to_char((random()*100)::int, ’FM09’)
| | to_char((random()*100)::int, °’FM09°’)
from generate_series(1l, 5000);
INSERT 0 5000

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Performance testing

dim=# explain analyze
SELECT =*
FROM numbers n
JOIN prefixes r
ON r.prefix @> n.number;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

PostgreSQL module development
GiST specifics

Developing a GiST module GiST challenges
Testing, debugging, tools

Performance testing

Nested Loop
(cost=0.00..4868614.00 rows=149575000 width=45)
(actual time=0.345..4994.296 rows=10213 loops=1)
-> Seq Scan on numbers n
(cost=0.00..375.00 rows=25000 width=11)
(actual time=0.015..12.917 rows=25000 loops=1)
-> Index Scan using idx_prefix on ranges r
(cost=0.00..104.98 rows=5983 width=34)
(actual time=0.182..0.197 rows=0 loops=25000)
Index Cond: (r.prefix @ (n.number)::prefix_range
Total runtime: 4998.936 ms
(5 rows)

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Current status and roadmap

Status & Roadmap

@ Current release is 0.3-1 and CVS version is live!
and has been involved in more than 7 million calls, 2 lookups
per call

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Current status and roadmap

Status & Roadmap

@ Current release is 0.3-1 and CVS version is live!
and has been involved in more than 7 million calls, 2 lookups
per call

@ Open item #1: add support for indexing text data directly,
using prefix_range internally without the user noticing.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Current status and roadmap

Status & Roadmap

@ Current release is 0.3-1 and CVS version is live!
and has been involved in more than 7 million calls, 2 lookups
per call

@ Open item #1: add support for indexing text data directly,
using prefix_range internally without the user noticing.

@ Open item #2: implement a simple optimisation idea (see
next slide).

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Current status and roadmap

Status & Roadmap

@ Current release is 0.3-1 and CVS version is live!
and has been involved in more than 7 million calls, 2 lookups
per call

@ Open item #1: add support for indexing text data directly,
using prefix_range internally without the user noticing.

@ Open item #2: implement a simple optimisation idea (see
next slide).

@ Release Version 1.0, go into maintenance mode!

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Current status and roadmap

Some more optimisation

prefix next version will provide some more optimisation by having
its internal data structure accept wider ranges of prefixes. The user
visible part of this will the the input format of the prefix range
datatype:

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Current status and roadmap

Some more optimisation

prefix next version will provide some more optimisation by having
its internal data structure accept wider ranges of prefixes. The user
visible part of this will the the input format of the prefix range
datatype:

SELECT ’abc[def-xyz]’::prefix_range;

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

Current status and roadmap

Project Organisation & Thanks

prefix project is using http://pgfoundry.org hosting facilities,
has no mailing-list and currently one maintainer.
Contributions and usage feedbacks are more than welcome.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

http://pgfoundry.org

Current status and roadmap

Project Organisation & Thanks

prefix project is using http://pgfoundry.org hosting facilities,
has no mailing-list and currently one maintainer.
Contributions and usage feedbacks are more than welcome.

While developing the solution, the IRC channel #postgresql was
a great resource, especially thanks to the invaluable help from
RhodiumToad, formerly known as AndrewSN, Andrew Gierth.

Dimitri Fontaine Custom indexing with GiST and PostgreSQL

http://pgfoundry.org

	Outline
	Introduction: problem and existing solutions
	Developing a GiST module
	PostgreSQL module development
	GiST specifics
	GiST challenges
	Testing, debugging, tools

	Current status and roadmap

